H(t)=-16t^2+152t+80

Simple and best practice solution for H(t)=-16t^2+152t+80 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+152t+80 equation:



(H)=-16H^2+152H+80
We move all terms to the left:
(H)-(-16H^2+152H+80)=0
We get rid of parentheses
16H^2-152H+H-80=0
We add all the numbers together, and all the variables
16H^2-151H-80=0
a = 16; b = -151; c = -80;
Δ = b2-4ac
Δ = -1512-4·16·(-80)
Δ = 27921
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-151)-\sqrt{27921}}{2*16}=\frac{151-\sqrt{27921}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-151)+\sqrt{27921}}{2*16}=\frac{151+\sqrt{27921}}{32} $

See similar equations:

| -4−8b=-10b−10 | | 9−10h=-10h+9 | | -7+2s=10+2s | | -2m+8=-8−6m | | (3x+13)+(x-8)+(x)=180 | | 13=5(y+5)-8y | | 12-6r=2r+44 | | 10p−2=10p+4 | | -6g+3=-7−6g | | -9+9d=-4+10d | | -40=5k | | 3r+10=-10+8r | | 5g+1=5g | | 9+7z=4z−9 | | 5−7v=-8v | | 4q−4=-9+4q | | 9v+4=-6+8v | | 13c-20+16c+238=953 | | 5−f=1−f | | -1−9w=-10w−10 | | 12c-15+15c+176=1404 | | 5y+2=2+5y | | -3/2^x+12=2x-3 | | 9k−6=2+7k | | 10+10j=10j+10 | | 6z+3=5+6z | | X-27=4(x-3) | | 1+3p=-4p+8 | | 14c-25+16c+238=1268 | | 10(7-x)=32 | | -3s−1=-3s | | -7y+5=5−7y |

Equations solver categories